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MIS1

What is the running time of MIS1 ?

Definition

In the context of exact exponential algorithms, we write

f (n) = O∗(g(n))

if f (n) = O(g(n)poly(n)), where poly(n) is an arbitrary polynomial.

For n large, (
√

2)n · poly(n) lies between 1.4142135n and 1.4142136n.
We write O(

√
2)n · poly(n)) = O∗(

√
2
n
) = O(1.4143n).

Note: Not only running time plays a role, also the memory requirements.
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Branching Algorithms

A branching algorithm is a recursive procedure allowing to determine the
optimal solution by dividing the problem in smaller subproblems with the
benefit

memory requirements are polynomial (or even linear)

the running time can be significantly better than the “worst-case”
analysis

simple improvements can be included, improving the practical
performance

Branching algorithms consist of

reduction rules for preprocessing instances I or stopping the recursion

branching rules to divide an instance in two or more smaller instances

Correctness of a branching is often easy to prove; the analysis more
difficult.

Arie M.C.A. Koster – RWTH Aachen University 6 / 29



Branching Algorithms

A branching algorithm is a recursive procedure allowing to determine the
optimal solution by dividing the problem in smaller subproblems with the
benefit

memory requirements are polynomial (or even linear)

the running time can be significantly better than the “worst-case”
analysis

simple improvements can be included, improving the practical
performance

Branching algorithms consist of

reduction rules for preprocessing instances I or stopping the recursion

branching rules to divide an instance in two or more smaller instances

Correctness of a branching is often easy to prove; the analysis more
difficult.

Arie M.C.A. Koster – RWTH Aachen University 6 / 29



Branching Algorithms

A branching algorithm is a recursive procedure allowing to determine the
optimal solution by dividing the problem in smaller subproblems with the
benefit

memory requirements are polynomial (or even linear)

the running time can be significantly better than the “worst-case”
analysis

simple improvements can be included, improving the practical
performance

Branching algorithms consist of

reduction rules for preprocessing instances I or stopping the recursion

branching rules to divide an instance in two or more smaller instances

Correctness of a branching is often easy to prove; the analysis more
difficult.

Arie M.C.A. Koster – RWTH Aachen University 6 / 29



Branching Algorithms

A branching algorithm is a recursive procedure allowing to determine the
optimal solution by dividing the problem in smaller subproblems with the
benefit

memory requirements are polynomial (or even linear)

the running time can be significantly better than the “worst-case”
analysis

simple improvements can be included, improving the practical
performance

Branching algorithms consist of

reduction rules for preprocessing instances I or stopping the recursion

branching rules to divide an instance in two or more smaller instances

Correctness of a branching is often easy to prove; the analysis more
difficult.

Arie M.C.A. Koster – RWTH Aachen University 6 / 29



Branching Algorithms

A branching algorithm is a recursive procedure allowing to determine the
optimal solution by dividing the problem in smaller subproblems with the
benefit

memory requirements are polynomial (or even linear)

the running time can be significantly better than the “worst-case”
analysis

simple improvements can be included, improving the practical
performance

Branching algorithms consist of

reduction rules for preprocessing instances I or stopping the recursion

branching rules to divide an instance in two or more smaller instances

Correctness of a branching is often easy to prove; the analysis more
difficult.

Arie M.C.A. Koster – RWTH Aachen University 6 / 29



Branching Algorithms

A branching algorithm is a recursive procedure allowing to determine the
optimal solution by dividing the problem in smaller subproblems with the
benefit

memory requirements are polynomial (or even linear)

the running time can be significantly better than the “worst-case”
analysis

simple improvements can be included, improving the practical
performance

Branching algorithms consist of

reduction rules for preprocessing instances I or stopping the recursion

branching rules to divide an instance in two or more smaller instances

Correctness of a branching is often easy to prove; the analysis more
difficult.

Arie M.C.A. Koster – RWTH Aachen University 6 / 29



Analysis

If the procesisng time of a search node is polynomial, the number of nodes
determines the overall running time of the algorithm.

The number of nodes of the search tree is at most twice its number of leafs.
Let T (n) be the maximum number of leafs of any search tree, given an
instance of size n.
Branching vector b = (t1, t2, . . . , tr ): instance of size n branches into r
instances with sizes at most n − t1, n − t2, . . . , n − tr .

Lemma

Given branching vector b = (t1, t2, . . . , tr ), it holds

T (n) ≤ T (n − t1) + T (n − t2) + . . .+ T (n − tr )

In worst-case, equality holds, and we search c such that T (n) = cn.
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Branching factor

Example: Branching vector b = (1, 1):

T (n) = 2n

Theorem

Let b be a branching rule with branching vector (t1, t2, . . . , tr ). The
running time is O∗(c) where c is the unique positive zero of the equation

xn − xn−t1 − xn−t2 − . . .− xn−tr = 0.

We denote c =: τ(t1, t2, . . . , tr ) = τ(b) the branching factor of b.

Lemma

Let r ≥ 2 and ti > 0 for all i ∈ {1, . . . , r}. Then

τ(t1, t2, . . . , tr ) > 1

τ(t1, . . . , tr ) = τ(tπ(1), . . . , tπ(r)) for every permutation π

If t1 > t ′1, then τ(t1, . . . , tr ) < τ(t ′1, t2, . . . , tr )
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Branching factor

Lemma

Let i , j , k positive real numbers.

τ(k , k) ≤ τ(i , j) for all (i , j) with i + j = 2k

τ(i , j) > τ(i + ε, j − ε) for all 0 < i < j and all 0 < ε < j−i
2

A first example:

Lemma

If vertices of degree 0 and 1 are preprocessed, then MIS1 has running time
O∗( 3
√

3) = O(1.4423n).
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Multiple Branching Rules

Lemma

If an algorithm uses different branching rules in different situations, the
running time is determined by the branching rule with highest branching
factor.

Lemma

Let (i , j) be a branching vector and (k , l) the branching vector for the
subproblem of siz n − i . Then, (i + k , i + l , j) is a branching vector for the
combined branching.
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More Reduction Rules

Lemma (Dominance rule)

Let G = (V ,E ) be a graph and v ,w adjacent vertices with N[v ] ⊆ N[w ].
Then, α(G ) = α(G − w).

Lemma (Simplicial rule)

Let G = (V ,E ) be a graph and v a simplicial vertex. Then,
α(G ) = 1 + α(G − N[v ]).

Lemma

Let G be a non-connected graph with C ⊂ V defining a connected
component of G. Then, α(G ) = α(G − C ) + α(G [C ]).
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More Branching Rules

Lemma (Standard Branching)

Let G = (V ,E ) and v ∈ V . Then,
α(G ) = max{1 + α(G − N[v ]), α(G − v)}.

The standard branching vector is (deg(v) + 1, 1).

Lemma

Let G = (V ,E ) and v ∈ V . If v is not contained in any maximum
independent set, then every maximum independent set contains at least
two vertices from N(v).

Arie M.C.A. Koster – RWTH Aachen University 12 / 29
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More Branching Rules

Let N2(v) := {w ∈ V \ N[v ] : ∃x ∈ N(v) with w ∈ N(x)}.

Definition

A vertex w ∈ N2(v) is called mirror of v , if N(v) \ N(w) defines a clique.
Let M(v) be the set of mirrors of v in G .

Lemma (Mirror Branching)

Let G = (V ,E ) and v ∈ V . Then

α(G ) = max{1 + α(G − N[v ]), α(G − ({v} ∪M(v))}.

Arie M.C.A. Koster – RWTH Aachen University 13 / 29
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Let M(v) be the set of mirrors of v in G .

Lemma (Mirror Branching)

Let G = (V ,E ) and v ∈ V . Then
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MIS2

Lemma (Separator Branching)

Let G = (V ,E ) and S separator of G. Let I(S) be the collection of all
independent sets of S. Then,

α(G ) = max
A∈I(S)

{|A|+ α(G − (S ∪ N[A]))} .

We apply separator branching only in two cases: S = N2(v) and |S | ≤ 2.
See page 27, Fomin & Kratsch, 2010.

Theorem

MIS2 solves the max. independent set problem in O(1.2786n).
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Refining the Analysis

Idea: use a different measure to bound the running time.

Here, the measure has to be satisfy following conditions:

1. the measure has to be smaller for smaller instances

2. the measure should be nonnegative

3. the measure should be bounded from above by a function of the
“natural” parameter of the input
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MIS3

First Analysis: O(1.3803n)

New measure: K1(G ′) := |{v ∈ V (G ′) : degG ′(v) ≥ 3}| =: n≥3
Branching factor: τ(1, 1) = 2.

Vertices of degree ≤ 1 have weight 0

Vertices of degree 2 have weight w2 ∈ [0, 1]

Vertices of degree ≥ 3 have weight 3

Theorem

With measure K2(G ′) := w2n2 + n≥3, MIS3 has running time O(1.3248n).

Theorem

Let k(G ′) =
∑n

i=0 wini with wi ∈ [0, 1] and ni = |{v ∈ V : deg(v) = i}|.
If w0 = w1 = 0, w2 = 0.596601, w3 = 0.928643 and wt = 1 for t ≥ 4, then
MIS3 has running time O(1.2905n).

Note: There exists an algorithm with running time O(1.2209n).
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Measure & Conquer for MDS

Example (MIN DOMINATING SET - MDS)

Given: Graph G = (V ,E )
Find: Dominating Set D ⊆ V of minimium cardinality, i.e., ∀v ∈ V :
N[v ] ∩ D 6= ∅.

Example (MIN SET COVER - MSC)

Given: Ground set U, collection S of nonempty subsets of U.
Find: Set Cover of (U,S), i.e., a subset S ′ ⊆ S such that ∪s∈S′s = U.
Minimize |S ′|.

MDS as MSC

Define U = V , S = {N[v ] = Sv : v ∈ V }.
MDS can be solved as MSC.

Note: |U| = |S| = |V | = n
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Solving MSC

For u ∈ U, let the frequency fu := |{S ∈ S : u ∈ S}.

W.l.o.g. fu ≥ 1, otherwise MSC is infeasible (i.e., U 6= ∪S∈SS).

Lemma

For a MSC instance it holds:

If for two distinct sets S and R, S ⊆ R, then there exists a MSC not
containing S.

If fu = 1 for some u ∈ U, the set S 3 u is contained in every set cover.

Note: If |S | = 1 for some S ∈ S, then either there is a R with S ⊆ R or
u ∈ S is covered solely by S . Hence, each one-element S can be
preprocessed.

Lemma

A MSC instance with |S | = 2 for all S ∈ S can be solved in polynomial
time.
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Solving MSC

Define del(S ,S) = {T : T = R \ S 6= ∅,R ∈ S}

Theorem

Algorithm MSC solves the Minimum Set Cover problem in
O(1.2353|S|+|U|).

Arie M.C.A. Koster – RWTH Aachen University 20 / 29



Solving MSC

Define del(S ,S) = {T : T = R \ S 6= ∅,R ∈ S}

Theorem

Algorithm MSC solves the Minimum Set Cover problem in
O(1.2353|S|+|U|).

Arie M.C.A. Koster – RWTH Aachen University 20 / 29



Back to MDS

Corollary

Minimum Dominating Set can be solved in O(1.23532n) = O(1.5259n).

Arie M.C.A. Koster – RWTH Aachen University 21 / 29



Outline

1 Exact Exponential Algorithms
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1.3 Lower Bounds
1.4 Dynamic Programming
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Lower Bounds for Branching
Algorithms

Theorem

The worst-case running time of MSC for Min. Dominating Set is
Ω(2

n
3 ) = Ω(1.2599n).
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TSP

Dynamic Programming for TSP
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Directed Feedback Arc Set

Example

Directed Feedback Arc Set Let G = (V ,A) be a directed graph. A
feedback arc set is a subset of the arcs F ⊆ A such that (V ,A \ F ) is
acyclic, i.e., every directed cycle in G contains at least one arc from F .

Definition

A topological ordering of a directed graph G = (V ,A) is an ordering
π : V → {1, . . . , n} (with n = |V |) such that π(u) < π(v), ∀(u, v) ∈ A.

All arcs are directed from left to right.

Lemma

Let G = (V ,A) be a directed graph and w : A→ Z+. Let k ≥ 0, integer.
There exists a feedback arc set F with weight

∑
a∈F wa ≤ k if and only if

there exists a linear ordering π of V s.t.
∑

(x ,y)∈A:π(x)>π(y) w(x , y) ≤ k.

π is a topological ordering of (V ,A \ F ).
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DFAS & Treewidth

Theorem

The DIRECTED FEEDBACK ARC SET problem can be solved in
O(nm2n) = O∗(2n), where n = |V | and m = |A|.

Theorem

The treewidth of a graph with n vertices can be determined in O∗(2n) time
and O∗(2n) memory.

Theorem

The treewidth of a graph with n vertices can be determined in O∗(2.9512n)
time and polynomial memory.
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COLORABILITY

Example (k-COLORABILITY)

Let G = (V ,E ) be a graph and k integer. A k-coloring of G is an
assignment c : V → {1, . . . , k} such that c(v) 6= c(w) for all vw ∈ E . The
chromatic number χ(G ) is the minimum k for which a k-coloring exists.

k-COLORABILITY can be solved in O∗(nn) = O∗(2n log n).

Theorem

χ(G ) can be computed in O∗((1 + 3
√

3)n) = O(2.4423n) with dynamic
programming.
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