9 Sequences

Definition 1 (sequence). A sequence of numbers is a mapping

$$x: \mathbb{N} \to \mathbb{R},$$
 $n \mapsto x_n,$

i.e. a rule assigning each natural number a real number x_n . We also use the notations $(x_n)_{n\in\mathbb{N}}$ or (x_n) or x_1, x_2, x_3, \ldots Instead of \mathbb{N} the set \mathbb{N}_0 may be used at times.

Definition 2 (convergence). A sequence (x_n) converges to a limit $x \in \mathbb{R}$ if for every $\varepsilon > 0$ there is a number $n_0 \in \mathbb{N}$ such that

for all
$$n \ge n_0$$
: $|x_n - x| < \varepsilon$.

We write

$$x = \lim_{n \to \infty} x_n \text{ or } x_n \to x.$$

A sequence that does not converge is divergent.

Theorem 3 (uniqueness of limits). A sequence has at most one limit.

Theorem 4 (Sandwich Theorem). Let (x_n) , (y_n) , (z_n) be sequences such that $x_n \to x$ and $z_n \to x$. If there exists a number $n_0 \in \mathbb{N}$ such that

for all
$$n \ge n_0$$
: $x_n \le y_n \le z_n$,

then $y_n \to x$.

Theorem 5 (convergence & boundedness). *If a sequence converges, then it is bounded.*

Theorem 6 (monotonicity, boundedness & convergence). *If a sequence is monotonic and bounded, then it is convergent.*

Definition 7 (indefinite convergence). Let (x_n) be a sequence. If for every $b \in \mathbb{R}$, there is a number $n_0 \in \mathbb{N}$ such that

for all
$$n \ge n_0$$
: $x_n \ge b$,
[for all $n \ge n_0$: $x_n \le b$,]

we write $x_n \to \infty$ $[x_n \to -\infty]$.

Theorem 8 (computations with limits). *If* (x_n) , (y_n) *are sequences such that* $x_n \to x$ *and* $y_n \to y$, *then*

- (i) $\lim_{n\to\infty}(x_n+y_n)=x+y$.
- (ii) $\lim_{n\to\infty}(x_n\cdot y_n)=xy$ (in particular $\lim_{n\to\infty}(c\cdot x_n)=cx$ for $c\in\mathbb{R}$).
- (iii) for $y \neq 0$: $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}$.
- (iv) $\lim_{n\to\infty} |x_n| = |x|$

Corollary 9 (limits of ratios of polynomials). Let P, Q be polynomials, i.e.

$$P(x) = \sum_{i=0}^{m} a_i x^i$$
 and $Q(x) = \sum_{i=0}^{k} b_i x^i$

with $m, k \in \mathbb{N}$, and $a_r, b_s \in \mathbb{R}$ for r = 0, 1, ..., m and s = 0, 1, ..., k, and $a_m, b_k \neq 0$. Then

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} \infty & \text{if } m > k \text{ and } a_m b_k > 0, \\ -\infty & \text{if } m > k \text{ and } a_m b_k < 0, \\ \frac{a_m}{b_k} & \text{if } m = k, \\ 0 & \text{if } m < k \end{cases}.$$

Definition 10 (asymtotic growth of sequences). Let (x_n) , (y_n) be sequences with $x_n \to \infty$ and $y_n \to \infty$. The sequence y_n grows faster to ∞ than (x_n) if

$$\lim_{n\to\infty}\frac{x_n}{y_n}=0.$$

Theorem 11 (speed of convergence). *In the following list each sequence grows faster to* ∞ *than the precedent sequence.*

- (i) (n^k) for $k \in \mathbb{N}$,
- (ii) (q^n) for q > 1,
- (iii) (n!),
- (iv) (n^n) ,
- (v) (2^{n^2}) .

Theorem 12 (CAUCHY criterion). A sequence (x_n) converges if and only if for every $\varepsilon > 0$ there is a number $n_0 \in \mathbb{N}$ such that

for all
$$m, n \geq n_0$$
: $|x_n - x_m| < \varepsilon$.